JOM 23771

Stable germa-imines: synthesis and reactivity of orthosubstituted anilinodimesitylgerma-imines *

M. Rivière-Baudet, A. Khallaayoun¹ and J. Satgé

Laboratoire de Chimie des Organominéraux, UA 477 du CNRS, Université Paul Sabatier, 31062 Toulouse Cedex (France) (Received March 2, 1993)

Abstract

The orthosubstituted anilinodimesitylgerma-imines $Mes_2Ge=NAA$ (1) and $Mes_2Ge=NAE$ (2) where NAA is N-(dimethylanthranilamide) and NAE is N-(methylanthranilate) have been prepared by dehydrohalogenation of the corresponding halogenogermylamines. They are rare examples of thermally stable and monomeric germa-imines, probably stabilized by intramolecular C=O \rightarrow Ge coordination. They readily undergo addition reactions with water, ethanol, germanols, phenylacetylene and chloroform to form adducts in which the protonic H is bonded to nitrogen. They also add to 3,5-ditert-butylorthoquinone, forming thermally unstable (2 + 4) and (2 + 2) adducts which rearrange to the expected digermadioxolane and dimesitylgermoxane respectively. By 1-3 cycloaddition, N-tert-butyl-phenylnitrone adds to germa-imines 1 and 2, yielding the first stable 1-oxa-2,4-diaza-5-germolanes.

1. Introduction

The chemistry of germa-imines has recently been reviewed [1,2]; few stable germa-imines have been characterized and most were obtained by the reaction of a germylene with an azide [1,2]; only three have been characterized by X-ray analyses [3,4]. In our search for an easy route to germa-imines, we examined the dehydrohalogenation reaction starting with halogenogermylamines of the type $R_2Ge(X)$ -NHR'. When such precursors are not sterically encumbered, the reaction gave cyclogermazanes (*i.e.*, germa-imines oligomers), whereas when bulky substituents are used in the hope of stabilizing the expected germa-imine, dehydrohalogenation did not easily occur [5].

2. Results and discussion

We recently found that from hindered precursors in which the germanium-halogen bond is "activated" by electron-withdrawing substituents on nitrogen and/or by nucleophilic assistance on germanium [6,7], dehydrohalogenation occurs readily even at low temperature to form stable germa-imines [8,9]. Using orthosubstituted anilines as nitrogen moieties, we obtained dimesitylgerma-imines in high purity: N-dimethylanthranilamide Mes₂Ge=NAA (1) and the N-methylanthranilate Mes₂Ge=NAE (2) where AAN= and AEN= are derived from anthranilic amide and methyl anthranilate, respectively.

Correspondence to: Professor M. Rivière-Baudet.

^{*} Dedicated to Professor Michael Lappert in appreciation of his pioneer work in Main Group 14 chemistry as part of his many contributions to organometallic chemistry.

¹ On leave from Université Ibnou Zohr, Agadir (Morocco).

Our preliminary results [9] showed these compounds to be thermally stable and monomeric. We now report on their chemical behaviour, concentrating on 1 which is obtained in high yield (85%) by reaction (1):

Compound 2 is formed in lower yield (17%), because of the well-known secondary reaction of tert-butyllithium with the carbonyl group of the ester [8,9].

The chlorogermyl secondary amine $Mes_2Ge(Cl)N-HAE$ [7] was used to prepare 2, whereas 1 required fluorogermylamine, $Mes_2Ge(F)NHAA$ [9], because the chlorogermyl precursor $Mes_2Ge(Cl)NHAA$ is unstable [7]. Alternatively, lithium dimethylamide reacts with the same fluorogermylamine to form the germa-imine 1 in appreciable yield (Scheme 1, route b).

1 crystallizes with one molecule either of diethylether or THF, but there is no evidence of complexation of either ether to the germanium. Each can easily be removed by dissolution of 1 in toluene and chloroform, followed by evaporation of the solvents, without decomposition of the germa-imine. Compound 2 behaves similarly.

The ¹H NMR spectra of 1 at 200 MHz at room temperature show inequivalence of the mesityl and N-methyl groups. Coalescence at about 55°C in CDCl₃ leads to singlets. One possible explanation is intramolecular interaction between the amido-group and germanium.

Mass spectra by chemical desorption of 1 and 2 showed that they are monomeric and the seven addition reactions which follow confirm beyond doubt that 1 and 2 react as monomers. If genuine dimers (e.g., cyclodigermazane) or higher polymers were present, the resulting products would be completely different [10].

Compound 1 adds ethanol, as expected [1-3,11-15]. With water (eqn. (2)) a stepwise reaction occurs, giving first the corresponding germanol 3.

 $Mes_2Ge = NAA + H_2O \longrightarrow$

1

Germanol 3 then reacts as an alcohol towards the germa-imine and, as a result, the main product of the reaction is the digermoxane 4 (eqn. (3a)). Reactions of germanols with germa-imines have not previously been reported.

$$Mes_{2}Ge = NAA + Mes_{2}Ge - N - AA \xrightarrow{(a)} 1$$

$$1 \qquad OH \qquad H$$

$$3 \qquad (Mes_{2}GeN(H)AA)_{2}O \quad (3)$$

$$2 \times 3 \xrightarrow{(b)} + H_{2}O$$

Of course, under the same experimental conditions, there is no dehydration of [3] (eqn. (3b)), which is not surprising because the mesitylgermanols $Mes_2Ge(H)$ (OH), $Mes_2Ge(OH)_2$, Mes_3GeOH are also stable [16,17].

Further evidence for the addition of germanols to germa-imines is provided by the addition of dimesityl-germanol [16] to germa-imine 1 (eqn. (4))

$$Mes_{2}Ge = NAA + Mes_{2}Ge - O - H \longrightarrow$$

$$1 \qquad H$$

$$Mes_{2}Ge < O$$

$$H$$

$$Mes_{2}Ge < H$$

$$5$$

Germanol 3, transiently formed and observed by ¹H NMR spectroscopy during the hydrolysis reaction (eqn. (2)), has been characterized by comparison with an authentic sample of 3 obtained by the slow hydrolysis in moist air of a benzene solution of the asymmetric N-dimethyl-N-(dimethylanthranilamide)germyldiamine (6) (eqn. (5)).

$$\begin{array}{c} \operatorname{Mes}_{2}\operatorname{Ge}-\operatorname{NHAA} \xrightarrow{H_{2}\operatorname{O}} \\ | \\ \operatorname{NMe}_{2} \end{array}$$

6

Germanol 3 thus obtained reacts with germa-imine 1 to give germoxane 4, confirming reaction 3.

Compound 6 must be prepared at low temperature in THF (Scheme 1, route a) to avoid the competitive formation of germa-imine 1 (Scheme 1, route b). We did not observe any spontaneous deamination of 6 such as could produce 1 by releasing Me_2NH .

Scheme 1.

Other mild protic reagents such as phenylacetylene (eqn. (6)) [9] and chloroform (eqn. (7)) add across the germanium-nitrogen double bond of germa-imines, leading to functional germylamines, 7 and 8, respectively.

Germa-imines 1 and 2 also give cycloaddition reactions. 1-4 Cycloadditions are the main reactions observed with 3,5-di-tert-butylorthoquinone. These transient adducts are not thermally stable and lead eventually, as previously observed [8,18] (eqn. (8)), to dimesitylgermadioxolane (Scheme 2, route a). 1-2 Cycloaddition occurs competitively, forming (Mes₂GeO)₂ (Scheme 2, route b), and the ratio of dimesitylgerma-

Scheme 2.

Germa-imines 1 and 2 react easily with N-phenyl [9] and N-tert-butyl-phenyl nitrone forming the first thermally stable 1-oxa-2,4-diaza-5-germolanes by 1-3 cycloaddition (eqn. (9)). Adducts of this type obtained from transient germa-imines are thermally unstable [19]. Stabilization is probably achieved here by the electron-withdrawing effects of the AA or AE substituents in addition to steric hindrance.

Because of their asymmetric carbon (C_3) , compounds 9 and 10 show at room temperature inequivalent mesityl groups in the ¹H NMR spectra (*e.g.*: 9, toluene-*d*₈, ppm, TMS): (*o*-Me: 2.87 (6H); 2.70 (6H); pMe 2.02 (3H); 2.29 (3H); NMe₂: 2.30 (6H). A decrease in temperature to -30° C enhances the inequivalence, suggesting a rigidity of the molecule which prevents free rotation of the methyl groups (*o*-Me: 3.11 (3H), 2.86 (3H); 2.83 (3H), 2.74 (3H); pMe: 2.06 (3H), 1.87 (3H); NMe₂: 2.35 (3H), 2.24 (3H)).

There is a significant decrease in ν (C=O) between the unsaturated compounds 1 or 2 and the corresponding adducts 3 to 10, suggesting that any interaction (Ge \leftarrow O) between the carbonyl group and germanium in 1 and 2 disappears upon the formation of an adduct. Among the factors which might favour the stability of compounds 1 and 2 are intramolecular coordination (Ge \leftarrow O), electron-withdrawal by the *ortho*-ester or amide group, and steric hindrance of the mesityl groups on germanium.

An X-ray crystal structure determination is necessary to decide which is most important.

3. Experimental section

All reactions were carried out under dinitrogen or argon and with dry solvents.

NMR spectra were recorded on Bruker AC 80 (¹H) and AC 200 (¹³C) spectrometers; IR spectra on a Perkin-Elmer 1600 FT IR spectrometer; mass spectra on a Rybermag R10-10 spectrometer operating in the electron-impact mode at 70 eV or by chemical desorption (DCi/CH₄). Elemental analyses were performed by the Ecole Nationale Supérieure de Chimie, Toulouse, France.

3.1. Anthranilic imido(dimesityl)germanium $Mes_2Ge = NAA \ 1$

1 was prepared [9] according to eqn. 1 (85%). m.p. 194–200°C (with decomposition). IR (CDCl₃, cm⁻¹): ν (C=O) 1634. ¹H NMR (80 MHz, CDCl₃) δMes: *p*-Me 2.15 (s); *o*-Me 2.25 (s, broad); C₆H₂ 6.57 (s); δAA: C₆H₄ 6.69–700m; NMe₂ 2.77 (s), 2.67 (s). ¹³C NMR (CDCl₃) (for carbon numbering, see eqn. 1). δMes 132.33 (C_{1'}); 142.98 (C_{2'}); 128.72 (C_{3'}); 137.79 (C_{4'}); 20.89 (*o*-Me); 24.40 (*p*-Me); δAA, 148.88 (C₁); 131.58 (C₂); 127.43 (C₃, C₄); 127.85 (C₅); 120.50 (C₆); 170.53 (C₇); 39.16, 34.34 (NMe₂). MS (DCi/CH₄): 475 (M⁺ + 1, 15%). ¹H NMR (200 MHz; CDCl₃, room temp.) δN-methyl: 2.70 (broad s), 2.78 (s); δMes(*o*-Me 2.15, 2.27 (broad s), *p*-Me 2.15(s); C₆H₂ 6.58 (broad singlet). Coalescence at about 55°C leads to singlets (NMe₂ 2.74; *o*-Me 2.28; *p*-Me 2.16; C₆H₂ 6.68).

A crystalline sample of 1 left in moist air for 18 h at room temperature showed only slight evidence of hydrolysis.

When 1 was heated in benzene for 18 h at 180°C, there was no evidence of decomposition.

3.2. Dimesityl-(N-methylanthranilatimido)germanium Mes₂Ge=NAE 2

Preparation [9] was according to eqn. 1 (17%) m.p. 201°C. IR (Nujol) ν (C=O): 1738 cm⁻¹. ¹H NMR (80 MHz, CDCl₃) δ Mes: *p*-Me 2.13 (5); *o*-Me 2.29 (s); C₆H₂ 6.55 (s); δ AE: OMe 3.65 (s); 7.45 (m) (H₃); 6.68 (s) (H₄ + H₅); 6.65 (s) (H₆). ¹³C NMR (CDCl₃) δ Mes: 134.32 (C_{1'}); 142.94 (C_{2'}); 128.60 (C_{3'}); 137.93 (C_{4'}); 23.93 (*o*-Me); 20.91 (*p*-Me), δ AA: 151.07 (C₁); 126.28 (C₂); 129.24 (C₃); 131.39 (C₅); 120.40 (C₆); 169.03 (C₇); 51.59 (OMe). MS (DCi/CH₄): 462 (M⁺+1, 100%).

3.3. Addition of ethanol to 1

Mes₂Ge(OEt)NHAA was obtained by addition of ethanol to a solution of 1 in CHCl₃ [9], yield 88%. m.p. 172°C. IR (CDCl₃) νNH 3384; ν(C=O) 1619 cm⁻¹. ¹H NMR (CDCl₃) δ Mes: o-Me 2.46 (s); p-Me 2.23 (s); C₆H₂ 6.79 (s); δEt: CH₂ 3.73 (q), CH₃ 1.17 (t) J(CH₂-CH₃): 7 Hz; δAANH: NH 5.62 (s); NMe₂ 2.99 (s); C₆H₄ 6.5-7.0 (m). ¹³C NMR (CDCl₃) δMes 132.04 (C₁'), 143.41 (C₂'), 129.53 (C₃'), 139.55 (C₄'), 21.08 (p-Me), 23.21 (o-Me); δEt: 19.03(CH₃), 59.43 (CH₂); δAA: 147.15 (C₁), 122.56 (C₂), 127.75 (C₃), 117.97 (C₄), 130.15 (C₅), 116.64 (C₆), 171.83 (C=O) MS (EI): 520 (M⁺, 12%).

3.4. Hydrolysis of germa-imine 1

To Mes₂Ge=NAA (1) (0.08 g; 0.17×10^{-3} mole) dissolved in 0.5 ml of CDCl₃, droplets of water were progressively added. The reaction was followed by ¹H NMR measurements. After 15 min of moderate heating (50–60°C), **3** was formed (15%), identified by comparison with an authentic sample (see 3.5.3. below), and **4** (85%).

A sample of pure 3 (see 3.5.3 below), (0.05 g; 0.10×10^{-3} mole) dissolved in 0.5 ml of CDCl₃, heated for 15 min at 60°C did not show any change.

4 was obtained as follows: $Mes_2Ge=NAA$ (1) (0.15 g; 0.31 × 10⁻³ mole) dissolved in 5 ml of moist CHCl₃ (H₂O ~ 0.03%) and heated in a sealed tube for 4 h at 80°C led after evaporation of the solvents to pure (Mes₂GeNHAA)₂O (4) (0.09 g), 59% m.p. 215°C. IR (CDCl₃) ν (NH): 3414; ν (C=O) 1622 cm⁻¹. ¹H NMR (CDCl₃) δ Mes: o-Me 2.22 (s); p-Me 2.15 (s); C₆H₂ 6.58 (s); δ AANH: NMe₂ 2.90 (s), NH 5.45 (s), C₆H₄ 6.50-7.00 (m). ¹³C NMR (CDCl₃) δ mes: 20.95 (p-Me); 23.07 (o-Me); 134.08 (C₁'); 143.08 (C₂'); 129.25 (C₃'); 138.81 (C₄'); δ AANH: 146.26 (C₁); 122.79 (C₂); 127.29 (C₃); 118.23 (C₄); 129.25 (C₅); 116.14 (C₆); 171.50 (C₇). MS (DCi/CH₄): 963 (M⁺ - 1, 3%); 993 (M⁺ + 29, 1%); 801 (M⁺ - NHAA, 100%); 845 (M⁺ - Mes, 6%).

Analysis Calc. for $C_{54}H_{66}Ge_2N_4O_3$: C 67.26, H 6.89, N 5.81. Found C 66.91, H 6.77, N 5.85%. 4 was not obtained by spontaneous dehydration of 3.

3.5. Syntheses of 3 from 6

3.5.1. Preparation at low temperature of Mes_2Ge - $(NMe_2)NHAA 6$

 Me_2NH (2 ml, 39.5×10^{-3} mole) dried on KOH pellets was condensed onto 5 ml of THF cooled to $-40^{\circ}C$. LiBu (1.6 M in pentane; 1.2 ml; 1.87×10^{-3} mole) was added slowly with stirring and the mixture was warmed to room temperature and then stirred for

30 min. LiMe₂N thus formed was transferred to a cooled $(-40^{\circ}C)$ THF solution of Mes₂Ge(F)NHAA [9] (0.92 g; 1.87×10^{-3} mole). After 2 h stirring, LiF was removed by centrifugation, leaving after evaporation of the solvents 0.87 g of an amorphous powder of Mes₂Ge(NMe₂) NHAA (6) (90%), m.p. 70°C. IR (CDCl₃) ν (NH): 3383; ν (C=O): 1620 cm⁻¹. ¹H NMR $(CDCl_3) \delta Mes: o-Me 2.36$ (s); p-Me 2.24 (s); C₆H₂ 6.79 (s); δ AANH: NMe₂ 2.96 (s), NH 4.84 (s); C₆H₄ 6.5-7.2 (m); δ GeNMe₂: 2.55 (s). ¹³C NMR (CDCl₃) δMes: 21.00 (p-Me); 22.47 (o-Me); 133.94 (C₁); 143.16 $(C_{2'})$; 129.42 $(C_{3'})$; 138.91 $(C_{4'})$; δ AANH: 147.28 (C_{1}) ; 122.31 (C_2); 127.87 (C_3); 117.15 (C_4); 129.93 (C_5); 115.65 (C₆); 171.70 (C₇); δ GeNMe₂: 39.66. MS (DCi/CH_4) , 356 (M⁺ – AANH, 10%). Analysis Calc. for C₂₉H₃₉GeN₃O C 67.21, H 7.58, N 8.10. Found C 66.91, H 7.57, N 7.83%.

3.5.2. Preparation of 6 and 1 at room temperature according to Scheme 1

The THF from LiMe₂N $(1.17 \times 10^{-3} \text{ mole})$ prepared as before was replaced by dry benzene (5 ml). LiMe₂N was then transferred to a benzene solution (10 ml) of Mes₂Ge(F)NHAA [9] (0.58 g, 1.17×10^{-3} mole) at room temperature. The reaction mixture was stirred for 2 h and LiF removed by centrifugation. The white residue obtained after evaporation of benzene was treated with pentane, affording a solution and a white precipitate (0.40 g) identified as germa-imine (1), 73% yield. The solution afforded on evaporation a white amorphous powder (0.14 g) identified as 6 (23%).

3.5.3. Synthesis of 3

A solution of 6 (0.87 g; 1.68×10^{-3} mole) in 4 ml C_6H_6 was slowly hydrolyzed in air. The reaction was followed by ¹H NMR spectroscopy. When 6 had disappeared (after 16 h) the benzene was evaporated in vacuo leaving an amorphous powder of pure Mes₂Ge(OH)NHAA (3) (0.65 g) 79%. IR (CDCl₃) ν (NH): 3383; ν (OH) 3625; ν (C=O) 1620 cm⁻¹. ¹H NMR (CDCl₃) δ Mes: *o*-Me 2.42 (s); *p*-Me 2.25 (s); C_6H_2 6.82 (s). δ NHAA: NH 5.23 (s); NMe₂ 2.99 (s); $C_{6}H_{4}$ 6.5–7.2 (m); δ OH 1.68 (s). ¹³C NMR (CDCl₃) δ Mes: 23.06 (o-Me); 21.10 (p-Me); 132.86 (C1'); 143.35 $(C_{2'})$; 129.58 $(C_{3'})$; 139.95 $(C_{4'})$. δ AANH: 146.66 (C_1) ; 122.15 (C_2); 128.27 (C_3); 117.25 (C_4); 130.48 (C_5); 116.66 (C₆); 171.52 (C₇). MS (Dci/CH₄) 493 (M⁺ + 1, 15%); 475 (M^+ – OH, 20%); 329 (M^+ – AANH₂, 33%). Analysis Calc. for C₂₇H₃₄GeN₂O₂; C 66.02, H 6.97, N 5.70. Found C. 65.86, H 7.06, N 5.59%.

3.6. Addition of 3 to 1

To Mes₂Ge=NAA (1) (0.050 g; 0.10×10^{-3} mole) in 1 ml C₆H₆ was added Mes₂Ge(OH)NHAA (3) (0.052 g; 0.10×10^{-3} mole) and the mixture was placed in a sealed tube for 14 h at 80°C. Evaporation of benzene led to 0.45 g of (Mes₂GeNHAA)₂O (4) (90%).

3.7. Preparation of 5

A mixture of Mes₂Ge=NAA 1 (0.11 g, 0.23×10^{-3} mole) and Mes₂Ge(H)(OH) (0.076 g, 0.23×10^{-3} mole) in 7 ml of benzene heated for 18 h at 80°C in a sealed tube gave 0.14 g of an amorphous powder identified as 5 (78%), m.p. 66°C. IR (CDCl₃) ν (NH) 3400; ν (Ge-H) 2061; ν (C=O) 1621 cm⁻¹. ¹H NMR (CDCl₃) δ Mes: o-Me 2.21 (s); p-Me 2.30 (s); C_6H_2 6.66 (s); δ AANH: NH 5.68 (s); NMe₂ 2.91 (s), C_6H_4 + GeH 6.5-7.0 (m). ¹³C NMR (CDCl₃) δ Mes: 133.85, 133.80 (C_{1'}); 143.50, 143.04 (C_{2'}); 129.03, 128.58 (C_{3'}); 139.03, 138.66 (C_{4'}); 23.12, 22.19 (o-Me); 21.01 (p-Me); SNHAA: 146.77 (C₁); 122.40 (C₂); 127.53 (C₃); 117.92 (C₄); 129.63 (C₅); 116.13 (C₆); 171.68 (C₇). MS (DCi/CH₄): 803 (M⁺ + 1, 69%); 683 (M⁺-Mes, 37%); 639 (M⁺- AANH, 100%) Analysis Calc. for C45H56Ge2N2O2; C 67.32, H 7.04, N 3.49. Found C 67.26, H 6.90, N 3.04%.

3.8. Preparation of $Mes_2Ge(C \equiv CPh)NHAA$ (7)

A mixture of 1 (0.255 g, 0.54×10^{-3} mole) and PhC=CH (0.055 g, 0.54×10^{-3} mole) in 3 ml C₆H₆ heated for 14 h at 100°C in a sealed tube led to 0.28 g of 7 [9], 90%. M.p. 52°C.

3.8.1. Alternative route to 7

To PhC=CH (0.110 g, 1×10^{-3} mole) in C₆H₆ (3 ml) at 0°C was added ^tBuLi (1×10^{-3} mole) with stirring. After 30 min further stirring at room temperature, Li(C=CPh) was transferred to a benzene solution of Mes₂Ge(F)NHAA [9] (0.53 g, 1×10^{-3} mole) stirred and cooled at 0°C. After 2 h at room temperature, LiF was removed by centrifugation and the solvent evaporated, yielding 0.46 g of 7. Yield 80%. IR (CDCl₃) ν NH: 3383; ν (C=O): 1620; ν C=C: 2160 cm⁻¹. ¹H NMR $(CDCl_3)$: δ Mes: o-Me 2.50 (s), p-Me 2.27 (s), (C_6H_2) 6.85 (s); δ AANH: NH 4.86(s); NMe₂ 2.99 (s); $\delta C_6 H_4$ + Ph 6.50-7.50 (m). ¹³C NMR (CDCl₃) δ Mes: 131.87 $(C_{1'})$; 143.85 $(C_{3'})$; 129.72 $(C_{3'})$; 139.62 $(C_{4'})$; 21.09 (p-Me); 23.37 (o-Me); δAA : 146.95 (C_1) ; 122.50 (C_2) ; 127.88 (C_3); 117.74 (C_4); 129.98 (C_5); 116.16 (C_6); 171.73 (C₇); δPhC=C: 123.46 (C_{1"}); 131.59 (C_{2"}); 128.21 (C3"); 128.44 (C4"); 106.22 (GeC); 93.97 (CPh). MS (EI): 576 M⁺, 3%.

3.9. Preparation of $Mes_2Ge(CCl_3)NHAA$ (8)

A mixture of Mes₂Ge=NAA 1 (0.30 g, 0.63×10^{-3} mole) and dry CHCl₃ (1 ml) was heated for 2 h at 80°C in a sealed tube. After evaporation of the excess of chloroform, a brownish amorphous powder (0.35 g) of 8 remained. Yield 94%. M.p. 48°C. IR (CDCl₃): ν (NH):

3405; ν (C=O): 1620 cm⁻¹. ¹H NMR (CDCl₃) δ Mes: *o*-Me 2.46 (s); *p*-Me 2.25 (s); C₆H₂ 6.82(s); δ NHAA: N-H 6.56 (s), NMe₂ 3.05 (s); C₆H₄ 6.3-7.1 (m). ¹³C NMR (CDCl₃) δ Mes: 133.47 (C₁'); 142.84 (C₂'); 130.04 (C_{3'}); 140.06 (C_{4'}); 24.54 (*o*-Me); 21.03 (*p*-Me). δ AA: 124.78 (C₂); 127.45 (C₃); 117.92 (C₄); 129.70 (C₅); 117.21 (C₆); 171.51 (C₇). MS (DCi/CH₄): 593 (M⁺, 1%). Analysis Calc. for C₂₈H₃₃Cl₃GeN₂O C 56.74, H 5.61, N 4.72. Found C 56.38, H 5.63, C 4.39%.

3.10. Additions of 3,5-di-t-butyl orthoquinone with 1 and 2

To a solution of germa-imine 1 (0.156 g, 0.33×10^{-3} mole) in 5 ml C₆H₆, was added 3,5-di-t-butylortho quinone (0.072 g, 0.33×10^{-3} mole), and the mixture was heated for 18 h at 80°C. ¹H NMR and MS analyses showed the formation of (Mes₂GeO)₂ and dimesitylgermadioxolane, which was identified by comparison with an authentic sample [20]. GC/MS analysis allowed the characterization of AANH₂, 164 (M⁺⁻), germadioxolane, 532 (M⁺⁻); and imine:

366 (M⁺⁺); 321 (M⁺⁺ – 3Me). The relative proportions of $(Mes_2GeO)_2$ and dimesitylgermadioxolane as measured by ¹H NMR were 33%, 67% respectively, indicating that the 1-2 and 1-4 addition were in these same proportions.

In a similar way, germa-imine (2) (0.03 g, 0.064×10^{-3} mole) and 3,5-di-t-butyl*ortho* quinone (0.014 g, 0.064×10^{-3} mole) in 1 ml C₆D₆, heated in a sealed tube for 18 h at 80°C gave dimesitylgermadioxolane [20] and (Mes₂GeO)₂ which were characterized by ¹H NMR and MS (DCi, CH₄): germadioxolane 533 (M⁺+ 1, 4%); (Mes₂GeO)₂ 655 (M⁺+ 1, 2%). Relative proportions by ¹H NMR led to: addition 1-2 25%, addition 1-4 75%.

3.11. Preparation of 9

A mixture of 1 (0.150 g; 0.31×10^{-3} mole) and *n*-t-butyl- α -phenylnitrone (0.056 g; 0.31×10^{-3} mole) in 5 ml C₆H₆ was heated for 3 days at 100°C. Evaporation of solvent led to a sticky residue which, after treatment with pentane, afforded 0.12 g of a white powder of 9. Yield 60%. m.p. 179°C. IR (CDCl₃) ν (C=O): 1608 cm⁻¹. ¹H NMR (CDCl₃) δ Mes: *o*-Me 2.56 (s), 2.42 (s), *p*-Me 2.30 (s), 2.17 (s), C₆H₂ 6.85 (s), 6.68 (s); δ AA: NMe₂ 2.84 (s), C₆H₄ 6.50–7.0 (m); δ PhCHN^tBu: ^tBu 0.80 (s), CH 5.49(s); C₆H₅ 7.13–7.63 (m). ¹³C NMR (CDCl₃) δ Mes: 133.86 (C₁'); 142.74, 141.82 (C₂'); 128.98, 128.85 (C₃'); 137.92, 137.39 (C₄'), 21.18, 20.99 (*p*-Me); 23.88, 23.49 (*o*-Me); δ AA: 172.76 (C₁), 130.06 (C₃), 116.35 (C₄), 131.20 (C₅), 119.77 (C₆), 211.04 (C₇); δ CHPh: 79.53 (CH), 143.46 (C_{1"}), 127.59 (C_{2"}), 130.67 (C_{3"}), 127.44 (C_{4"}); δ N¹Bu: 27.23 (CH₃), 58.35 (C_{IV}). MS (Ei): 651 (M⁺⁺, 8%), 399 (M⁺⁺PhCHNAA, 48%). Analysis calc. for C₃₈H₄₇GeN₃O₂: C 70.17, H 7.28, N 6.46. Found: C 70.60, H 7.67, N 6.24%.

3.12. Preparation of 10

In a similar way, **2** and PhCH=N(O)^tBu led to **10** [9] (95%). IR (CDCl₃) ν (C=O): 1660, ν (COC): 1240 cm⁻¹. ¹H NMR (CDCl₃) δ Mes: *o*-Me 2.60 (s), 2.39 (s), *p*-Me 2.32 (s), 2.16 (s), C₆H₂ 6.88 (s), 6.67 (s); δ AE: *o*-Me 3.66 (s), H₄ 6.43 (d,d,d), J(3-4) 8.2 Hz; J(4-6) 2.4 Hz; J(4-5) 5.6 Hz, H₃, H₅, H₆, C₆H₅ 7.14-7.76 (m, 8H); ^tBu 0.74 (s); CH 5.39 (s). ¹³C NMR (CDCl₃) δ Mes 133.96 (C₁'), 142.60, 140.86 (C₂'), 129.30, 129.10 (C₃'), 138.28, 137.39 (C₄'), 21.19, 20.95 (*p*-Me), 24.34, 23.35 (*o*-Me); δ AE: 153.16 (C₁), 110.70 (C₂), 131.87 (C₃), 115.45 (C₄), 134.64 (C₅), 118.45 (C₆), 170.65 (C₇), 52.46 (OCH₃); δ CHPh: 80.04 (CH), 140.21 (C₁"), 127.93 (C₂"), 131.04 (C₃"), 127.51 (C₄"); δ N^tBu: 58.35 (C_{IV}), 27.26 (CH₃). MS (Ei): 638 (M⁺, 15%); 399 (M⁺-PhCHNAE, 84%).

Acknowledgments

One of us (M.R.-B.) is especially grateful to Professor Michael Lappert for his guidance during a postdoctoral stay in the unforgettable Lab 3, and for his encouragement and friendship over the years.

References

- 1 J. Barrau, J. Escudié and J. Satgé, J. Chem. Rev., 90 (1990) 283.
- 2 J. Escudié, C. Couret, H. Ranaivonjatovo and J. Satgé, Coord. Chem. Rev., in press.
- 3 M. Veith, S. Becker, V. Huch, Angew. Chem., Int. Ed. Engl., 29 (1990) 216.
- 4 A. Meller, G. Ossig, W. Maringgele, D. Stalke, R. Herbst-Irmer, S. Freitag and G.M. Sheldrick, J. Chem. Soc., Chem. Commun., (1991) 1123.
- 5 M. Rivière-Baudet, A. Khallaayoun, J. Satgé and M. Ahra, Synth. React. Inorg. Met. Org. Chem., 22 (1992) 683.
- 6 M. Rivière-Baudet, P. Rivière, A. Castel, A. Morère and C. Abdenhadher, J. Organomet. Chem., 409 (1991) 131.
- 7 M. Rivière-Baudet, A. Morère, A. Khallaayoun and J. Satgé, Main Group Metal Chem., 15 (1992) 255.
- 8 M. Rivière-Baudet and A. Morère, J. Organomet. Chem., 431 (1992) 17.
- 9 M. Rivière-Baudet, A. Khallaayoun and J. Satgé, Organometallics, 12 (1993) 1003.
- (a) A. Khallaayoun, A. Morère and M. Rivière-Baudet, Main Group Met. Chem., 14 (1991) 89; (b) M. Rivière-Baudet and A. Morère, Phosphorus, Sulfur and Silicon, 62 (1991) 211.
- 11 C. Glidewell, D. Lloyd and K.W. Lumbard, J. Chem. Soc., Dalton Trans., (1987) 501.

- 12 C. Glidewell, D. Lloyd, K.W. Lumbard and J.S. McKechnie, Tetrahedron Lett., 28 (1987) 343.
- 13 J. Pfeiffer, W. Maringgele, M. Noltemeijer and A. Meller, Chem. Ber., 122 (1989) 245.
- 14 T. Tsumuraya and W. Ando, Chem. Lett., (1989) 310.
- 15 N. Wiberg, G. Preiner, P. Karampatses, C.H. Kim and K. Schurz, *Chem. Ber.*, 120 (1987) 1357.
- 16 P. Rivière, M. Rivière-Baudet, A. Castel, J. Satgé and A. Lavabre, Synth. React. Inorg. Met. Org. Chem., 17 (1987) 539.
- 17 I.I. Lapkin, V.A. Dumler and E.S. Ponosova, Zh. Obsch. Khim., 39 (1969) 1455, 1426.
- 18 M. Rivière-Baudet, P. Rivière, A. Khallaayoun, J. Satgé and K. Rauzy, J. Organomet. Chem., 358 (1988) 77.
- 19 M. Rivière-Baudet, P. Rivière, A. Castel, G. Lacrampe and J. Satgé, Rec. Trav. Chim. Pays-Bas, 102 (1983) 65.
- 20 P. Rivière, A. Castel, J. Satgé and D. Guyot, J. Organomet. Chem., 315 (1986) 157.